The realization space is [1 1 x1 - 1 0 0 1 x1^2 - x1 + 1 x1^2 - 2*x1 + 1 0 x1^2 - 2*x1 + 1 x1^2 - x1 + 1] [1 0 x1^2 1 0 1 0 x1^3 - x1^2 x1^2 - x1 + 1 x1^2 x1^3 - x1^2 + x1] [0 0 0 0 1 1 x1^2 x1^2 x1 x1^2 x1^2] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (x1^12 - 6*x1^11 + 14*x1^10 - 21*x1^9 + 20*x1^8 - 13*x1^7 + 5*x1^6 - x1^5) avoiding the zero loci of the polynomials RingElem[x1, x1 - 2, x1 - 1, x1^3 - 4*x1^2 + 3*x1 - 1, x1^2 - 3*x1 + 1, 2*x1 - 1, x1 + 1, x1^2 - x1 + 1]